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ABSTRACT 
 
 

he COVID-19 pandemic forced the rapid 
development of vaccines and the implementation of 
mass vaccination programs around the world. 
However, many hesitated to take the vaccine due to 
concerns about its effectiveness. By looking at an 

ordinary differential equation (ODE) model of disease spread 
that incorporates a mass vaccination program, this study aims to 
determine the sensitivity of the cumulative count of infected 
individuals (𝑊 ) and the cumulative death count (𝐷 ) to the 
following model parameters: disease transmission rate (𝛽 ), 
reciprocal of the disease latency period (𝜅), reciprocal of the 
infectious period (𝛾), death ratio (𝛼), vaccine efficacy rate (𝑟), 
and vaccine rollout rate (𝛿). This was implemented using Latin 
hypercube sampling and partial rank correlation coefficient. 
Results show that 𝐷  is highly sensitive to 𝛼  and shows 
increasing sensitivity to 𝛿 in the long run. On the other hand, 𝑊 
is highly sensitive to 𝜅 at the beginning of the simulation, but 
this weakens over time. In contrast, 𝑊 is not very sensitive to 𝛿 
initially but becomes very significant in the long run. This 
supports the importance of the vaccine rollout rate over the 
vaccine efficacy rate in curbing the spread of the disease in the 
population. It is also worthwhile to reduce the death ratio by 
developing a cure for the disease or improving the healthcare 
system as a whole. 
   

INTRODUCTION 
 
The COVID-19 pandemic that originated in Wuhan, China had 
a lasting impact on our society. Governments around the world 
were forced to implement lockdowns in an attempt to curb the 
spread of the pandemic, which proved detrimental to the 
economy (Abiad et al. 2020). Vaccines against COVID-19 were 
developed at an extraordinary rate, and massive vaccination 
programs were launched in many countries. 
 
Vaccine efficacy is a measure of how much a vaccine lowers the 
risk of getting the outcome being considered (for example, being 
infected by the disease) (World Health Organization 2021). The 
World Health Organization (WHO) only approves vaccines that 
have at least 50% efficacy. The best vaccines were Moderna 
(89.2% efficacy against symptomatic infections and 95% 
efficacy against hospitalization) (World Health Organization 
2022 August 18 (Moderna)) and Pfizer (91% efficacy) (World 
Health Organization 2022 August 18 (Pfizer)). On the other 
hand, China’s Sinovac-CoronaVac had an efficacy of 51% 
against symptomatic infections and 100% efficacy against 
hospitalization (World Health Organization 2022 March 15). 
 
It was recently revealed in a Reuters investigation (Bing and 
Schectman 2024) that the Pentagon launched an anti-vaccination 
campaign to discredit Sinovac, the COVID-19 vaccine 
developed in China. These efforts were done via social media 
and targeted the Philippine population, eventually expanding to 
Southeast Asia, Central Asia, and the Middle East. The 
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Philippines might have been chosen as a target because Filipinos 
are very active in social media (Backlinko Team 2025). 
Together with the Dengvaxia controversy in 2016, it is no 
surprise that a lot of Filipinos were hesitant to get the COVID-
19 vaccine at the beginning of the vaccination program 
(Regencia 2021). One study (Amit et al. 2022) identified brand 
preferences, negative experiences with the health system, 
misinformation, and political issues as some of the contributing 
factors to vaccine hesitancy. 
 
This study aims to explore the validity of brand preferences as a 
reason for vaccine hesitancy. We consider a slight variation of 
an epidemic model that incorporates an ongoing mass 
vaccination program (Bargo et al. 2024). We use Latin 
hypercube sampling (LHS) and partial rank correlation 
coefficient (PRCC) to perform sensitivity analysis (Marino et al. 
2008). Our goal is to determine the sensitivity of the cumulative 
count of infected individuals and the death count to the vaccine 
efficacy and the rollout rate (or the rate of distribution) of the 
vaccine to the population, as well as the other disease parameters 
of the model. This study is contextualized in the Philippine 
setting, using the estimated model parameters from various 
sources. 
 
Using the results from this study could provide insights into the 
implementation of mass vaccination programs in the event that 
another pandemic takes place in the future. Proving the 
importance of vaccine efficacy would mean that WHO should 
be more stringent in approving vaccines that can be distributed 
to the population. However, proving the importance of vaccine 
rollout rate would mean that governments should figure out a 
way to alleviate the hesitancy of the population to vaccines. 
 
 
MATERIALS AND METHODS 
 
This section covers the modified SEIR model that incorporates 
the implementation of a mass vaccination program. We also 
discuss the numerical solution of the model and determine the 
input and output variables that will be used for sensitivity 
analysis. Finally, we discuss the implementation of Latin 
hypercube sampling and partial rank correlation coefficient to 
determine the sensitivity of our chosen output variables with the 
model parameters. 
 
Model Formulation 
We consider a modification of an SEIR model that incorporates 
a mass vaccination program (Bargo et al. 2024). We define the 
following variables: 

• 𝑆: number of unvaccinated susceptible individuals 
• 𝑆!: number of vaccinated susceptible individuals 
• 𝐸: number of unvaccinated exposed individuals 
• 𝐸!: number of vaccinated exposed individuals 
• 𝐼: number of unvaccinated infected individuals 
• 𝐼!: number of vaccinated infected individuals 
• 𝑅: number of unvaccinated recovered individuals 
• 𝑅!: number of vaccinated recovered individuals 
• 𝐷: number of unvaccinated individuals who died from 

the disease 
• 𝐷!: number of vaccinated individuals who died from 

the disease 
• 𝑁: total initial population. 

 
Refer to Figure 1 for the compartmental diagram of this model. 
 

 
Figure 1: Compartmental diagram of the SEIR model incorporating a 
mass vaccination program 

We make the following assumptions on our model: 
1. Vaccines are administered only to susceptible 

individuals. Susceptibles are being vaccinated at the 
rate 𝑑(𝑡). To prevent 𝑆 from becoming negative, we 
define 

𝑑(𝑡) = 𝑚𝑖𝑛{𝛿, 𝑆∗(𝑡)} , (1)	
where 𝛿 is the vaccination rate at the beginning of the 
vaccination program and 𝑆∗(𝑡)  is the number of 
remaining qualified susceptibles at time 𝑡 , i.e., the 
susceptibles who won’t be transferred to the 
unvaccinated exposed class in the next time step 
(Teodoro 2025). At the beginning of the vaccination 
program, the vaccines are being distributed at a 
constant rate 𝛿  that is dictated by the supply of 
vaccines and the manpower of the organization that 
conducts the vaccination program. However, once the 
current number of susceptibles 𝑆(𝑡)  falls below 𝛿 , 
then only 𝑆∗(𝑡) will be vaccinated. 
 

2. The vaccine is imperfect in the sense that it does not 
completely prevent an individual from contracting the 
disease. However, a vaccinated susceptible individual 
is less likely to be infected. If ever a vaccinated 
individual is infected, the viral load is less than the 
viral load of an unvaccinated individual. 

 
Let 𝛽  be the disease transmission rate when an 
unvaccinated susceptible individual interacts with an 
unvaccinated infected individual. Let 𝜃!  be the 
disease transmission rate when an unvaccinated 
susceptible interacts with a vaccinated infected 
individual. Let 𝛽!  be the disease transmission rate 
when a vaccinated susceptible interacts with an 
unvaccinated infected individual. Let 𝜓!  be the 
disease transmission rate when a vaccinated 
susceptible interacts with a vaccinated infected 
individual. Because the vaccine is imperfect, we have 
0 < 𝜃!, 𝛽!, 𝜓! < 𝛽 . In this work, we adopt the 
following parameters (Bargo et al. 2024): 

 

𝜃! =
1
3
𝛽 (2) 

𝛽! = (1 − r)𝛽 (3) 

𝜓! =
1
3
	𝛽! (4)	

where 𝑟 is the efficacy of the vaccine distributed in the 
population. 

 
3. The latency period 1 𝜅⁄  is defined to be the period 

from the moment that a susceptible acquires the 
infection up to the moment when the symptoms show 
up and the individual is now classified as infected. The 
rate of transfer of individuals from the exposed 
compartments ( 𝐸  and 𝐸! ) to the infected 
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compartments (𝐼 and 𝐼!) is inversely proportional to 
the latency period, and hence is equal to 𝜅. We assume 
that this rate is the same for both unvaccinated and 
vaccinated individuals. 
 

4. The infectious period 1 𝛾⁄  refers to the duration of the 
disease from the moment that symptoms show up until 
the moment that the individual either recovers or dies 
from the disease. The rate of transfer of individuals 
from the infected compartments (𝐼 and 𝐼!) is inversely 
proportional to the infectious period, and hence is 
equal to 𝛾. We assume that this rate is the same for 
both unvaccinated and vaccinated individuals. 

 
5. No reinfection occurs, which means a recovered 

individual gains immunity from the disease and does 
not go back to being susceptible. 

 
6. A certain proportion of infected individuals may die 

from the disease. This ratio is equal to 𝛼  for 
unvaccinated individuals, and equal to 𝛼!  for 
vaccinated individuals. 

 
7. No additional individuals are added to the population 

(via births or immigration) or removed from the 
population (via emigration or death by other means). 
As a result, we have 
𝑆 + 𝑆! + 𝐸 + 𝐸! + 𝐼 + 𝐼! + 𝑅 + 𝑅! +𝐷 +𝐷! = 𝑁	

at any time 𝑡. 
 
The modified SEIR model that incorporates a mass vaccination 
program, under the assumptions mentioned above, can be 
described by this system of ordinary differential equations 
(ODEs): 
 

𝑆# = −(β𝐼 + θ!𝐼!)
$
%
− δ(𝑡)

𝑆!# = −(β!𝐼 + ψ!𝐼!)
$!
%
+ δ(𝑡)

𝐸# = (β𝐼 + θ!𝐼!)
$
%
− κ𝐸

𝐸!# = (β!𝐼 + ψ!𝐼!)
$!
% − κ𝐸!

𝐼# = κ𝐸 − γ𝐼
𝐼!# = κ𝐸! − γ𝐼!
𝑅# = (1 − α)γ𝐼
𝑅!# = (1 − α!)γ𝐼!
𝐷# = αγ𝐼
𝐷!# = α!γ𝐼

 (5) 

   
Input and Output Variables 
Numerical simulations were implemented in  Matlab R2024b. 
We solve the system  (5) on the time interval 𝑡 ∈ [0,140] and 
discretize the interval with ∆𝑡 = 1 , indicating that we are 
monitoring daily counts of each compartment for 20 weeks. We 
choose to simulate over a short period to mimic the conditions 
of the mass distribution of vaccines during the COVID-19 
pandemic, where supplies are limited because the vaccines were 
newly-developed. 
 
We are going to fix the following parameters for the sensitivity 
analysis on model (5): 

• The total initial population of our city is 𝑁 =
5,000,000. 

• The number of unvaccinated infected individuals at 
𝑡 = 0 is 𝐼(0) = 5,000. The rest of the population are 
unvaccinated susceptibles at 𝑡 = 0 , so 𝑆(0) =
4,995,000 . The other compartments 
(𝐸, 𝑅, 𝐷, 𝑆!, 𝐸!, 𝐼!, 𝑅!, 𝐷!) are set to 0 at 𝑡 = 0. 

• The vaccine prevents death from the disease, so 𝛼! =
0. 

The remaining variables will be used as input variables in the 
sensitivity analysis in this study. These include: 

• disease parameters: transmission rate (𝛽), reciprocal 
of the latency period (𝜅), reciprocal of the infectious 
period (𝛾), death ratio (𝛼) 

• vaccine parameters: vaccine efficacy rate (𝑟), vaccine 
rollout rate (𝛿) 

 
We solve the system numerically using the explicit Euler 
scheme (Burden and Faires 2010). While it is not as accurate as 
other numerical schemes in solving ODE systems, it allows us 
to find a nice expression for the number of susceptibles 𝑆∗(𝑡)  in 
equation (1) that are qualified to receive the vaccine once the 
number of remaining susceptibles fall below the vaccine rollout 
rate. This means 

𝑆∗(𝑡) = 𝑆(𝑡) − S𝛽𝐼(𝑡) + 𝜃!𝐼!(𝑡)T
$(')
%
.  (6) 

 
At the beginning of the COVID-19 pandemic, countries 
monitored cases by examining the cumulative number of 
infected individuals and the cumulative death count 
(Worldometer 2024). Hence, we shall choose the following 
model outputs for our analysis: 

• the cumulative death count at weekly intervals 𝑡 =
7,14,… ,140, and 

• cumulative infected count at weekly intervals 𝑡 =
7,14,… ,140. 

The cumulative death count is given by 𝐷(𝑡), since the model 
assumes that the vaccine provides protection from death due to 
the disease (𝛼! = 0 ). On the other hand, let 𝑊(𝑡)  be the 
cumulative infected count at time 𝑡. This satisfies the differential 
equation 

𝑊# = 𝜅(𝐸 + 𝐸!), (7) 
since we are counting the individuals who got infected 
regardless of their vaccination status. The initial condition is 
given by 𝑊(0) = 𝐼(0) + 𝐼!(0). 
 
Refer to Figure 2 for the simulation of model (5) for the 
following values of the parameters: 𝛽 = 0.37, 𝜅 = 0.18, 𝛾 =
0.15, 𝛼 = 0.09, 𝑟 = 0.75, and 𝛿 = 27,887. These values will 
serve as base values for the sensitivity analysis (to be discussed 
in the next section). We are only interested in the graphs of the 
cumulative infected count over time 𝑊(𝑡) and the cumulative 
death count over time 𝐷(𝑡) to see the behavior of our chosen 
output variables. We observe an increase in the cumulative 
infected and the cumulative death count at around 𝑡 = 60, after 
which we observe that the graph approaches a horizontal 
asymptote.  
 

 
Figure 2: Evolution of the cumulative infected count 𝑾 (in blue) and 
the cumulative death count 𝑫 (in red) for the following parameters: 
𝜷 = 𝟎. 𝟑𝟕, 𝜿 = 𝟎. 𝟏𝟖, 𝜸 = 𝟎. 𝟏𝟓, 𝜶 = 𝟎. 𝟎𝟗, 𝒓 = 𝟎. 𝟕𝟓, and 𝜹 = 𝟐𝟕, 𝟖𝟖𝟕. 
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Sensitivity Analysis 
Sensitivity analysis aims to identify which of the input variables 
are the main contributors to the variation of the model output 
(Iman and Helton 1988). A popular method of doing sensitivity 
analysis uses the combination of LHS and PRCC. This has been 
demonstrated on an HIV model (Blower and Dowlatabadi 1994). 
 
LHS is a variation of the stratified random sampling method that 
ensures each input variable has all portions of its probability 
distribution represented (McKay et al. 1979). This involves 
dividing the range of each input variable into 𝑁 subintervals of 
equal probability, and then a sample is picked from each 
subinterval. The choice of 𝑁 should be at least equal to 𝑘 + 1 
(where 𝑘 is the number of input variables of the model), but in 
practice 𝑁 > (4𝑘) 3⁄  is a good criterion for choosing 𝑁 
(Blower and Dowlatabadi 1994). We then generate the LHS 
matrix 𝑋  by taking the samples picked from the first input 
variable and pairing them randomly with the samples picked 
from the second input variable. These pairs are now assigned 
randomly to the samples picked from the third input variable, 
and so on, until all input variables have been assigned. This 
produces a matrix of size 𝑁 × 𝑘, where each row contains a 
particular combination of the input variables for our model. We 
run the model for each row of the LHS matrix 𝑋 to obtain the 
values of the model output and store them on the output vector 
𝑌. 
 

PRCC starts with rank-transforming the data from the LHS 
matrix and the output vector. We then generate linear regression 
models described by 

𝑥̀) = 𝑐* +b𝑐+𝑥+

,

+-.
+/)

(8) 

𝑦̀ = 𝑏* +b𝑏+𝑥+

,

+-.
+/)

(9) 

for each input variable. We then compute the correlation 
coefficient between the residuals S𝑥) − 𝑥̀)T  and (𝑦 − 𝑦̀) . We 
also compute the associated 𝑝-value for the correlation, defined 
to be the probability of observing a nonzero correlation 
coefficient with the assumption that the null hypothesis (i.e. 
there is no correlation between the parameter and the model 
output) is true. If the 𝑝-value is less than 0.05, we reject the null 
hypothesis and conclude that the correlation coefficient is 
significantly different from 0. 
 
To implement sensitivity analysis on model (5), we gather 
information on the probability distributions of our chosen input 
variables. We focus our study with parameter estimates using 
Philippine data, summarized in Table 1. 
 

Table 1: Input variables, baseline values, and distributions for the model of disease spread with an ongoing mass vaccination program (5) 
Variable Base Value Distribution Parameters 
ℛ*  2.41 Truncated normal 𝜇 = 2.41  

𝜎 = 0.03826531  
Range: [0, +∞) 

1 𝜅⁄   5.5 Truncated normal 𝜇 = 5.5  
𝜎 = 0.97  
Range: [1, +∞) 

1 𝛾⁄   6.5 Truncated normal 𝜇 = 6.5  
𝜎 = 0.77  
Range: [4, +∞) 

𝛼  0.09 Uniform Range: [0,0.44] 
𝑟  0.75 Uniform Range: [0.5,1] 
𝛿  27,887 Beta 𝛼 = 0.7340199944487569  

𝛽 = 112.5201094419424  
Scale: 4,302,834.680007711 
Offset: −1.197495370221827 × 10012 

We adopt the estimated probability distributions for the latency 
period (1 𝜅⁄ ) and the infectious period (1 𝛾⁄ ) from a study 
(Caldwell et al. 2021) using data from the Philippines from 
March 1, 2020 to February 23, 2021. We choose the base values 
of these parameters to be equal to the mean. For the transmission 
rate 𝛽, we use the distribution obtained by another study (Haw 
et al. 2020) for the basic reproduction number ℛ*  (i.e. the 
average number of secondary infections from one infective 
individual) using data from the Philippines pre-ECQ phase 
(from February 11, 2020 to March 19, 2020), which removes the 
effect of social distancing protocols on the transmission of 
COVID-19. Similar to the case of the latency period and the 
infectious period, we choose the mean to be the base value for 
ℛ*. Using the definition of the basic reproduction number ℛ* =
𝛽 𝛾	⁄ , we then derive the transmission rate 𝛽 by dividing ℛ* by 
the base value of the infectious period 1 𝛾⁄  (equal to 6.5). 
 
For estimating the death ratio 𝛼 , we refer to a study on the 
COVID-19 death tally as of April 29, 2020 (Haw et al. 2020). 
The nationwide death ratio is 0.09, but it varies based on 
geographic location, age group, and comorbidity. The highest 
death ratio is for the age group 80 and above (0.44). In the 
absence of studies on the probability distribution for the 
COVID-19 death ratio, we simply choose a uniform distribution 

in the range [0,0.44] and set the nationwide death ratio of 0.09 
to be the base value for 𝛼. For the vaccine efficacy 𝑟, we also 
choose a uniform distribution because we have no information 
on the distribution of the efficacy of existing COVID-19 
vaccines. We limit the range of the uniform distribution in the 
interval [0.5,1] since the WHO only authorizes the distribution 
of vaccines with at least 50% efficacy. We assign the middle of 
the interval (0.75) as the base value for 𝑟. As for the vaccine 
rollout 𝛿 , data from the Philippines was obtained from Our 
World in Data (Our World in Data 2024) and the best probability 
distribution that fits the data was computed using the Python 
library distfit (Taskesen 2020). Details of the calculation of the 
probability distribution parameters are presented by Bargo 
(Bargo 2025). The base value is equal to the mean of the beta 
distribution that fits the data. 
 
To generate the LHS matrix, we have 𝑘 = 6 input variables and 
choose to divide the sample space into 𝑁 = 700 subintervals for 
each input variable. The Matlab implementation of LHS was 
based on the work of Minasny (Minasny 2004), modified for the 
truncated normal distributions and the beta distribution. For the 
implementation of PRCC, we say that the correlation coefficient 
is significantly different from 0 when the 𝑝-value is less than 
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0.05. Since we are studying the cumulative death count and the 
cumulative infected count at several time nodes, we look at the 
evolution of the correlation coefficients over time.  
 
It should be noted that PRCC is not accurate when the 
relationship between the input variable and the model output is 
not monotonic, which means that the model output should be 
either increasing or decreasing as you increase the value of the 
input variable. (Marino et al. 2008). To check for monotonicity 
of a model output with respect to an input variable, we take the 
corresponding column from the LHS matrix we generated 
previously. We then calculate the model output using the 
different values of the input variable while fixing the rest of the 
parameters using the base values in Table 1. Although the 
cumulative infected count 𝑊(𝑡) remains constant with respect 
to the death ratio 𝛼 for all time nodes, the rest of the parameters 
in Table 1 have been verified to have monotonic relationships 
with the output variables 𝐷(𝑡) and 𝑊(𝑡), 𝑡 = 7,14,… ,140. 

RESULTS AND DISCUSSION 
 
We present the evolution of the PRCC of the output variables 
(cumulative death count 𝐷 and cumulative infected count  𝑊) 
with respect to the parameters mentioned in Table 1. We first 
present the results for the disease parameters: transmission rate 
(𝛽 ), reciprocal of the latency period (𝜅 ), reciprocal of the 
infectious period (𝛾), and death ratio (𝛼). We then discuss the 
results for the vaccine parameters: vaccine efficacy rate (𝑟) and 
vaccine rollout rate (𝛿). 
 
Sensitivity with Respect to Disease Parameters 
Figure 3 shows the evolution of the PRCC of the output variables 
𝐷  and 𝑊  with respect to 𝛽 . Both output variables show a 
positive correlation, though we observe larger PRCC values for 
𝑊 at the beginning of the simulation period (when we are at the 
beginning of the mass vaccination program). It is interesting to 
note that the PRCC values of 𝑊 versus 𝛽 decrease over time. 
On the other hand, we see an initial increase of the PRCC values 
for 𝐷 versus 𝛽 up to Day 28, and then it eventually decreases. 
The corresponding 𝑝-values are close to 0, indicating that the 
PRCC values are significantly different from 0. 
 

 
(A) 𝐷(𝑡) vs 𝛽 (B) 𝑊(𝑡) vs 𝛽 

Figure 3: Evolution of the PRCC of the output parameters 𝑫 (Figure 3A) and 𝑾 (Figure 3B) with respect to 𝜷. The region between the two red lines 
indicate PRCC values that are not significantly different from 0 (where 𝒑-values are greater than 0.05), which is not the case for 𝜷.

We also look at the scatter plots of the residuals of the output 
variables 𝐷 and 𝑊 with respect to 𝛽, as shown in Figure 4. The 
best-fit lines are almost horizontal, but we observe a better fit at 
Day 7. On Day 140, the points are more dispersed, with 𝐷 
showing more dispersion compared with 𝑊. This is consistent 
with the plots in Figure 3 showing that the PRCC values are 
getting closer to 0 towards the end of the simulation period. This 

suggests that both output variables are only slightly sensitive to 
𝛽 and this sensitivity decreases over time. Efforts to reduce 𝛽 by 
reducing contact between susceptible and infected individuals 
(via social distancing rules) may not have a significant effect in 
reducing disease spread. 
 

 
(A) 𝐷(𝑡) vs 𝛽: Day 7 (B) 𝐷(𝑡) vs 𝛽: Day 140 
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(C) 𝑊(𝑡) vs 𝛽: Day 7 (D) 𝑊(𝑡) vs 𝛽: Day 140 

Figure 4: Scatter plots of the residuals of the rankings for 𝑫 (Figure 4A and 4B) and 𝑾 (Figure 4C and 4D) with respect to the residuals of the 𝜷 
ranking.

Figure 5 shows the evolution of the PRCC values of the output 
variables 𝐷  and 𝑊  with respect to 𝜅 . Both output variables 
show a positive correlation, and we also observe this correlation 
decrease over time (similar to 𝛽). The corresponding 𝑝-values 

are very small, implying that the PRCC values are significantly 
different from 0. 
 

 
(A) 𝐷(𝑡) vs 𝜅 (B) 𝑊(𝑡) vs 𝜅 

Figure 5: Evolution of the PRCC of the output parameters 𝑫 (Figure 5A) and 𝑾 (Figure 5B) with respect to 𝜿. The region between the two red lines 
indicate PRCC values that are not significantly different from 0 (where 𝒑-values are greater than 0.05), which is not the case for 𝜿.

When we look at the scatter plots of 𝑊 versus  𝜅 in Figure 6, we 
observe that the corresponding best-fit line at Day 7 is 
significantly steeper than the corresponding best-fit line at Day 
140. We expect this result since 𝜅 is the parameter that increases 
the count of infected individuals, but this increase slows down 
eventually (as shown in Figure 2). On the other hand, we see the 
same pattern in the scatter plots of 𝐷  versus 𝜅  as the one 

observed in 𝐷  versus 𝛽 : relatively flat best-fit lines and the 
points in the scatter plots are more dispersed towards the end of 
the simulation period. This suggests that the death count is only 
slightly sensitive to the reciprocal of the latency period. 
 

 
(A) 𝐷(𝑡) vs 𝜅: Day 7 (B) 𝐷(𝑡) vs 𝜅: Day 140 
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(C) 𝑊(𝑡) vs 𝜅: Day 7 (D) 𝑊(𝑡) vs 𝜅: Day 140 

Figure 6: Scatter plots of the residuals of the rankings for 𝑫 (Figure 6A and 6B) and 𝑾 (Figure 6C and 6D) with respect to the residuals of the 𝜿 
ranking.

Figure 7 shows the evolution of the PRCC of the output variables 
𝐷  and 𝑊  with respect to 𝛾 . We observe a strong negative 
correlation of 𝑊  with 𝛾 , which is to be expected as 𝛾  is the 
parameter involved in decreasing the infected compartments 𝐼 
and 𝐼!. However, we observe that 𝐷 initially shows a positive 
correlation with 𝛾  (up to Day 14), and then we eventually 

observe a negative correlation. The corresponding 𝑝-values are 
very small, indicating that the PRCC values are significantly 
different from 0.  
 

   
(A) 𝐷(𝑡) vs  𝛾 (B) 𝑊(𝑡) vs  𝛾 

Figure 7: Evolution of the PRCC of the output parameters 𝑫 (Figure 7A) and 𝑾 (Figure 7B) with respect to 𝜸. The region between the two red lines 
indicate PRCC values that are not significantly different from 0 (where 𝒑-values are greater than 0.05), which is not the case for 𝜸.

Figure 8 shows the scatter plots of the output variables with 
respect to 𝛾. Notice that the slope of the best-fit line for 𝐷 is 
positive at Day 7 but negative at Day 140. We also observe that 
the points are closer to the best-fit line at Day 7 and become 
more dispersed at Day 140. In contrast, the negative slope of the 
best-fit line for 𝑊 is sustained throughout the simulation period, 

with the points located close to the best-fit line. For both cases, 
the best-fit lines are not so steep, implying that the output 
variables are only slightly sensitive to 𝛾.  
 

 
(A) 𝐷(𝑡) vs 𝛾: Day 7 (B) 𝐷(𝑡) vs 𝛾: Day 140 
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(C) 𝑊(𝑡) vs 𝛾: Day 7 (D) 𝑊(𝑡) vs 𝛾: Day 140 

Figure 8: Scatter plots of the residuals of the rankings for 𝑫 (Figure 8A and 8B) and 𝑾 (Figure 8C and 8D) with respect to the residuals of the 𝜸 
ranking.

Due to the non-monotonic relationship of 𝑊 with 𝛼, we cannot 
use LHS-PRCC for sensitivity analysis. Because of this, we shall 
only look at the evolution of the PRCC values of 𝐷 with respect 
to 𝛼  (unlike the previous discussions with the other disease 
parameters), as shown in Figure 9. We observe a very strong 

positive correlation that only slightly decreases over time. The 
𝑝-values are close to 0, implying that the PRCC values are 
significantly different from 0. 
 

 
Figure 9: Evolution of the PRCC of the output parameter 𝑫 with respect to 𝜶. The region between the two red lines indicate PRCC values that are not 
significantly different from 0 (where 𝒑-values are greater than 0.05), which is not the case for 𝜶. 

We present the scatter plots of the residuals of 𝐷  versus the 
residuals of 𝛼 in Figure 10. Notice that the slope of the best-fit 
line decreases only slightly towards the end of the simulation 
period. However, the dispersion of the points near the best-fit 
line are higher at Day 140 compared with Day 7. These still 
show the high sensitivity of 𝐷 with 𝛼, indicating that efforts to 
reduce the death ratio (by finding a cure to the disease or simply 
improving the overall healthcare system) are worthwhile. 
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(A) 𝐷(𝑡) vs 𝛼: Day 7 (B) 𝐷(𝑡) vs 𝛼: Day 140 

Figure 10: Scatter plots of the residuals of the rankings for 𝑫 with respect to the residuals of the 𝜶 ranking.

To summarize, the cumulative death count 𝐷 is sensitive to all 
the disease parameters, but the sensitivity is not that strong, save 
for the death ratio 𝛼. This highlights the importance of reducing 
𝛼 in controlling the death count, either by finding a cure for the 
disease or improving the healthcare system. On the other hand, 
the cumulative infected count 𝑊  is not very sensitive to the 
disease transmission rate  𝛽 and the reciprocal of the infectious 
period 𝛾 . However, 𝑊  shows a strong sensitivity to the 
reciprocal of the latency period (𝜅) at the start of the simulation, 
which gradually decreases over time. 
 

Sensitivity with Respect to Vaccine Parameters 
Figure 11 shows the evolution of 𝑝-values and PRCC values for 
the output variable 𝐷 with respect to 𝑟. We observe that the 𝑝-
values are consistently above the threshold level of significance 
of 0.05 (Figure 11A), indicating that there is not enough 
information to say that the PRCC values are different from 0 as 
verified by Figure 11B. This may imply that 𝐷 is not sensitive 
to 𝑟. It is worth noting that there is no apparent effect of the 
vaccine efficacy on the cumulative death count, even though we 
expect the distribution of the vaccine to reduce the number of 
infected individuals. This may be due to the imperfect nature of 
the vaccine, which does not prevent the individual from being 
infected.  
 

 
(A) 𝑝-values of 𝐷(𝑡) vs 𝑟 (B) PRCC of 𝐷(𝑡) vs 𝑟 

Figure 11: Evolution of the 𝒑-values (Figure 11A) and the PRCC (Figure 11B) of the output parameter 𝑫 with respect to 𝒓. The red lines indicate the 
threshold separating PRCC values that are not significantly different from 0. These plots show that the PRCC values are not statistically different from 
0 on the entire simulation period.

Figure 12 shows the evolution of 𝑝-values and PRCC values for 
the output variable 𝑊 with respect to 𝑟. We observe that the 𝑝-
value is above the 0.05 threshold on Day 7 but falls below the 
threshold starting from Day 14. This implies that the PRCC 
values are significantly different from 0 starting from Day 14, 

indicating the delayed effect of the vaccine efficacy on the 
cumulative count of infected individuals.  
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(A) 𝑝-values of 𝑊(𝑡) vs 𝑟 (B) PRCC of 𝑊(𝑡) vs 𝑟 

Figure 12: Evolution of the 𝒑-values (Figure 12A) and the PRCC (Figure 12B) of the output parameter 𝑾 with respect to 𝒓. The red lines indicate the 
threshold separating PRCC values that are not significantly different from 0. These plots show that the PRCC values are statistically different from 0 
starting from Day 14.

Figure 13 shows the scatter plots of the residuals of 𝑊 versus 
the residuals of 𝑟 . Notice that the best-fit line is almost 
horizontal on Day 7 but becomes decreasing at Day 140. The 
best-fit line is still relatively horizontal, implying that 𝑊 is only 

slightly sensitive to 𝑟. It may not be worthwhile to wait for a 
vaccine with a higher efficacy rate. 
 

 
(A) 𝑊(𝑡) vs 𝑟: Day 7 (B) 𝑊(𝑡) vs 𝑟: Day 140 

Figure 13: Scatter plots of the residuals of the rankings for 𝑾 with respect to the residuals of the 𝒓 ranking.

Figure14 shows the evolution of the PRCC values of the output 
variables 𝐷  and 𝑊  with respect to 𝛿 . We observe that both 
output variables are negatively correlated to 𝛿, which is to be 
expected since increasing the number of vaccinated individuals 
will lead to lower chances of being infected and also dying from 
the disease. However, note that the correlation is relatively weak 

at the beginning of the simulation period and grows stronger as 
time passes. The corresponding 𝑝-values are all below the 0.05 
threshold, indicating that the PRCC values are significantly 
different from 0. 
 

 
(A) 𝐷(𝑡) vs 𝛿 (B) 𝑊(𝑡) vs 𝛿 

Figure 14: Evolution of the PRCC of the output parameters 𝑫 (Figure 14A) and 𝑾 (Figure 14B) with respect to 𝜹. The region between the two red lines 
indicate PRCC values that are not significantly different from 0 (where 𝒑-values are greater than 0.05), which is not the case for 𝜹.
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The scatter plots for the residuals of the output variables versus 
the residuals of 𝛿 are shown in Figure 15. At Day 7, the best-fit 
lines for both 𝐷 and 𝑊 are almost horizontal, but the decreasing 
relationship is evident towards the end of the simulation period 
(Day 140). It is also interesting to note that the points in the 

scatter plot of 𝐷 versus 𝛿 appear to form a curved line instead of 
a straight line. This may imply a nonlinear relationship between 
these two variables. 
 

 
(A) 𝐷(𝑡) vs 𝛿: Day 7 (B)	𝐷(𝑡) vs 𝛿: Day 140  

 
(C)	𝑊(𝑡) vs 𝛿: Day 7 (D)	𝑊(𝑡) vs 𝛿: Day 140 

Figure 15: Scatter plots of the residuals of the rankings for 𝐷 (Figure 15A and 15B) and 𝑊 (Figure 15C and 15D) with respect to the residuals of the 
𝛿 ranking.

In summary, the cumulative death count and the cumulative 
infected count are both sensitive to the vaccine rollout rate, with 
the sensitivity growing stronger as time passes. On the other 
hand, only the cumulative infected count is sensitive to the 
vaccine efficacy rate, which is only evident after 2 weeks of 
vaccine distribution. Moreover, this sensitivity is not as strong 
compared with the vaccine rollout rate. This implies that the 
vaccine rollout rate is more important in curbing the spread of 
the disease in our population. 
 
 
CONCLUSION 
 
This work has shown that the cumulative death count (𝐷) is 
highly sensitive to the death ratio (𝛼) and shows increasing 
sensitivity to the vaccine rollout rate (𝛿) in the long run. On the 
other hand, the cumulative infected count (𝑊) is highly sensitive 
to the reciprocal of the latency period (𝜅) at the beginning of the 
simulation, but this sensitivity weakens over time. In contrast, 
𝑊 is not very sensitive to 𝛿 initially but becomes very sensitive 
to it in the long run. This supports the importance of the vaccine 
rollout rate over the vaccine efficacy rate in curbing the spread 
of the disease in the population. It is also worthwhile to reduce 
the death ratio by developing a cure for the disease or improving 
the healthcare system as a whole. 
 
Due to the nonmonotonic relationship between 𝑊 and 𝛼, this 
case was excluded from the analysis. Another method of 

sensitivity analysis (that does not rely on the monotonic 
relationship between input and output variables) may reveal 
whether 𝑊 is sensitive to 𝛼. It may also reveal other sensitivity 
relationships that were not very evident when using the 
combination of LHS and PRCC. 
 
This study presents a general framework for conducting 
sensitivity analysis on an epidemic model incorporating a mass 
vaccination program, assuming the distributions of the input 
variables are as presented in Table 1. This framework may be 
extended to the multiple-city version of model (5). This will be 
discussed in a future paper, focusing on the availability of 
multiple vaccine brands being distributed in the population. One 
could also look at relaxing the condition 𝛼! = 0 to see if 𝐷 will 
be sensitive to 𝑟. 
 
A limitation of LHS-PRCC in conducting sensitivity analysis is 
the monotonicity requirement of the model output with respect 
to the input variables. This may be influenced by the base values 
of the model that were used in this study, as shown by 
preliminary work in this direction but with different distributions 
having much higher base values for 𝛽 and 𝛼 (Teodoro 2025). 
Future studies could be done in exploring these possibilities, 
simulating the arrival of a pandemic with a much higher casualty 
rate. 
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